Skip to main content

Appendix B Notation

Symbol Description Location
\(A \subseteq B\) set inclusion Definition 1.1.1
\(\mathbb{N}\) natural numbers Paragraph
\(\mathbb{Z}\) integers Paragraph
\(\mathbb{Q}\) rational numbers Paragraph
\(\mathbb{R}\) real numbers Paragraph
\((a,b), [a,b], \text{etc.}\) intervals of real numbers Paragraph
\(f: A \rightarrow B\) function Definition 1.1.4
\((g \circ f)(x)\) function composition Definition 1.1.7
\(|A| = |B|\) cardinality, equal Definition 1.1.10
\(|A| \leq |B|\) cardinality, less than or equal Definition 1.1.10
\(P(A)\) power set Definition 1.1.12
\(b \mid a\) divides; divisible by Definition 1.3.1
\(\gcd(a,b)\) greatest common divisor Definition 1.3.4
\(n!\) factorial Definition 2.1.14
\(P(n,k),\ {}_nP_k\) \(k\)-permutation of an \(n\)-set Proposition 2.2.5
\(\binom{n}{k}, C(n,k),\ {}_nC_k\) \(k\)-combination of an \(n\)-set Definition 2.2.15
\(\lfloor n \rfloor\) floor function Example 3.2.1
\(D_n\) number of derangements of \(\{1,2,\ldots,n\}\) Exploration 3.3.1
\([x]\) equivalence class of \(x\) Definition 4.1.7
\(a \equiv b \Mod{n}\) congruence modulo \(n\) Definition 4.2.1
\(\mathbb{Z}_n\) Set of congruence classes mod \(n\) Definition 4.2.6
\(a \ \mathrm{\bf mod} \ n\) modulo operation Definition 4.2.12
\(\phi(n)\) Euler's totient function Definition 4.4.1
\(d(v)\) degree of a vertex Definition 5.2.6
\(V(G)\) vertex set of \(G\) Remark 5.2.11
\(E(G)\) edge set of \(G\) Remark 5.2.11
\(C_n\) cycle on \(n\) vertices Definition 5.3.12
\(K_n\) complete graph on \(n\) vertices Definition 5.3.13
\(G_1 \cong G_2\) graph isomorphism Definition 5.4.3
\(\overline{G}\) graph complement of \(G\) Definition 5.4.15
\(P_n\) path graph on \(n\) vertices Definition 5.5.1
\(K_{m,n}\) complete bipartite graph on \(m\) and \(n\) vertices Definition 5.6.8